During
the last few weeks the public has heard the wildly positive and optimistic
views of both the government and some local scientists concerning the Lynas
plant in Gebeng, Kuantan.
On 20th
March, the Minister of Science, Technology and Innovation (MOSTI), Dr Maximus
Ongkili told the Dewan Rakyat that the Lynas plant is safe and not harmful to
public health. He said that the effluent from the plant contained low
radioactive material. He explained that the effluent was not categorised as a
radioactive material waste by the International Atomic Energy Agency, as it
contained natural radioactive material (Ongkili: Proposed Gebeng Rare Earth
Plant Is Safe, Bernama, 23 March 2011).
Unfortunately,
he failed to give the effluent the proper name: TENORM.
TENORM and the fallacy of
Molten Salt Reactor (MSR)
Technologically-Enhanced, Naturally-Occurring
Radioactive Material (TENORM) is produced when activities such as uranium
mining, or sewage sludge treatment, concentrate or expose radioactive materials
that occur naturally in ores, soils, water, or other natural materials.
In other words, this natural radioactive material has been made dangerous because it was removed from the ground and concentrated by mechanical and chemical processes. It has been exported by Australia and will be left in Malaysia as wastes by Lynas.
The radioactive material does not disappear once it reaches and is processed in Malaysia, and this dangerous material will be left in Malaysia. Malaysians will need to keep this securely away from humans for hundreds of thousands of years.
In other words, this natural radioactive material has been made dangerous because it was removed from the ground and concentrated by mechanical and chemical processes. It has been exported by Australia and will be left in Malaysia as wastes by Lynas.
The radioactive material does not disappear once it reaches and is processed in Malaysia, and this dangerous material will be left in Malaysia. Malaysians will need to keep this securely away from humans for hundreds of thousands of years.
Lynas and AELB have made the TENORM sound
like low level waste by merely diluting the waste until it conforms with IAEA
regulations. Diluting does not make the radiation ‘go away’, and if the
diluting liquid evaporates, you will again have concentrated radioactive material
very harmful to people. The uranium and thorium will not evaporate with time.
Bear in mind that Australia has categorically stated that it will refuse to receive radioactive materials from other countries.
Bear in mind that Australia has categorically stated that it will refuse to receive radioactive materials from other countries.
During the recent Parliamentary Select
Committee (PSC) public hearings on Lynas, nuclear physicist Dr. Abdul Rahman
Omar reportedly praised the value of the thorium wastes i.e. one tonne of
thorium ‘can generate 1 gigawatt of electricity a year which is worth RM 1
billion to RM 2 billion, multiply this by 2,000 tonnes a year that the factory
will produce, then it is worth between RM2 trillion to RM4 trillion in
electricity’. (Read nuclear energy and nuclear reactor).
He added that this technology dubbed Molten
Salt Reactor (MSR) was mooted by the Americans at Oak Ridge National
Laboratory, between 1968 and 1972 but was abandoned in favour of uranium due to
its abundance.
‘China is now working very hard on using thorium for energy generation’. Alternatively, the gypsum by product produced from Lynas could be sold to China which would extract the thorium for energy production’, he said ('Lynas' thorium can generate RM4 trillion in energy', Nigel Aw, Malaysiakini, May 21, 2012 http://www.malaysiakini.com/news/198568).
However, according to an article published in the UK Guardian (23 June 2011), debunking thorium as a greener nuclear option, it states that ‘There is a significant sticking point to the promotion of thorium as the ‘great green hope’ of clean energy production: it remains unproven on a commercial scale. While it has been around since the 1950s (and an experimental 10MW LFTR (liquid fluoride thorium reactor) did run for five years during the 1960s at Oak Ridge National Laboratory in the US, though using uranium and plutonium as fuel) it is still a next generation nuclear technology – theoretical’.
‘China is now working very hard on using thorium for energy generation’. Alternatively, the gypsum by product produced from Lynas could be sold to China which would extract the thorium for energy production’, he said ('Lynas' thorium can generate RM4 trillion in energy', Nigel Aw, Malaysiakini, May 21, 2012 http://www.malaysiakini.com/news/198568).
However, according to an article published in the UK Guardian (23 June 2011), debunking thorium as a greener nuclear option, it states that ‘There is a significant sticking point to the promotion of thorium as the ‘great green hope’ of clean energy production: it remains unproven on a commercial scale. While it has been around since the 1950s (and an experimental 10MW LFTR (liquid fluoride thorium reactor) did run for five years during the 1960s at Oak Ridge National Laboratory in the US, though using uranium and plutonium as fuel) it is still a next generation nuclear technology – theoretical’.
The article further states that although
China has announced that it intends to develop a thorium MSR, nuclear
radiologist Peter Karamoskos of the International Campaign to Abolish Nuclear
Weapons (ICAN), says ‘the world shouldn’t hold its breath’.
He added that ‘Without exception, [thorium
reactors] have never been commercially viable, nor do any of the intended new
designs even remotely seem to be viable. Like all nuclear power production they
rely on extensive taxpayer subsidies; the only difference is that with thorium
and other breeder reactors these are of an order of magnitude greater, which is
why no government has ever continued their funding’.
The article states that ‘Those who support
renewables say they will have come so far in cost and efficiency terms by the
time the technology is perfected and upscaled that thorium reactors will
already be uneconomic. Indeed, if renewables had a fraction of nuclear's
current subsidies they could already be light years ahead’.
Health Risks of Thorium and
other TENORMs
All other issues aside, thorium is still
nuclear energy, say environmentalists, its reactors disgorging the same toxic
byproducts and fissile waste with the same millennial half-lives. Oliver
Tickell, author of Kyoto2, says the fission materials produced from thorium are
of a different spectrum to those from uranium-235, but ‘include many
dangerous-to-health alpha and beta emitters’.
Anti-nuclear campaigner Peter Karamoskos goes
further, dismissing a ‘dishonest fantasy’ perpetuated by the pro-nuclear lobby.
‘Thorium cannot in itself power a reactor; unlike natural uranium, it does not
contain enough fissile material to initiate a nuclear chain reaction. As a
result it must first be bombarded with neutrons to produce the highly
radioactive isotope uranium-233 – “so these are really U-233 reactors”,’ says
Karamoskos.
‘This isotope is more hazardous than the
U-235 used in conventional reactors’, he adds, ‘because it produces U-232 as a
side effect (half life: 160,000 years), on top of familiar fission by-products
such as technetium-99 (half life: up to 300,000 years) and iodine-129 (half
life: 15.7 million years). Add in actinides such as protactinium-231 (half
life: 33,000 years) and it soon becomes apparent that thorium’s superficial
cleanliness will still depend on digging some pretty deep holes to bury the
highly radioactive waste’.
Referring to the UK, The Guardian article
says that ‘with billions of pounds already spent on nuclear research, reactor
construction and decommissioning costs – dwarfing commitments to renewables –
and proposed reform of the UK electricity markets apparently hiding subsidies
to the nuclear industry, the thorium dream is considered by many to be a
dangerous diversion’.
Citing Jean McSorley senior consultant for
Greenpeace’s nuclear campaign: ‘Even if thorium technology does progress to the
point where it might be commercially viable, it will face the same problems as
conventional nuclear: it is not renewable or sustainable and cannot effectively
connect to smart grids. The technology is not tried and tested, and none of the
main players is interested. Thorium reactors are no more than a distraction’.
According to Dr. Rosalie Bertell, who is a
radiation expert, thorium reactors also produce a lot of Americium, which is
much more toxic than plutonium. ‘I do not think that, even if thorium some day
becomes a viable option, they will ever want to separate out the thorium from
the Malaysian waste, where it has been significantly diluted so that it appears
to be below regulatory concern. You cannot say it is a valuable commodity and
also release it as of no concern! Moreover, you are not dealing with pure
thorium, but with radioactive material with a long list of radioactive decay
products some of which are very radioactive. New reactors will get their
thorium from India or Australia. Malaysia would be considered a secondary or
tertiary source’ she states.
In other words, there is no economic
possibility or feasibility that anyone will use the Malaysian waste for thorium
when there are large direct sources of thorium to be had immediately in
Australia or India.
Dr. Bertell is a nuclear health expert who
has done extensive research on nuclear health impacts all over the world
including the Marshall Islands, India, Germany, Ukraine, US and Canada. She has
been a consultant to the US Nuclear Regulatory Commission and the US
Environmental Protection Agency. She was a key witness during the Bukit Merah
court hearings.
However, contrary to the world experts, the
local medical and nuclear so-called experts have recently testified to the PSC
that the thorium produced from Lynas was too low to pose significant health
dangers.
In contrast to what the PSC has been told by the local so-called experts, the health impacts of radiation are not benign. In a comparative study by V. T. Padmanabhan et al of inhabitants of regions of normal and high background radiation in Kerala from 1988 – 1994, the researchers showed that thorium health damage from monazite sands was evident (International Journal of Health Services Vol. 34 No. 3 pp483-515, 2004).
The study revealed that there was a high incidence of heritable anomalies in the high background region (HBRR). There was a statistically significant increase of Down syndrome, autosomal dominant anomalies and multifactorial diseases and an insignificant increase of autosomal recessive and X-linked recessive anomalies in the HBRR.
The main findings of the study have been summarised as follows:
In contrast to what the PSC has been told by the local so-called experts, the health impacts of radiation are not benign. In a comparative study by V. T. Padmanabhan et al of inhabitants of regions of normal and high background radiation in Kerala from 1988 – 1994, the researchers showed that thorium health damage from monazite sands was evident (International Journal of Health Services Vol. 34 No. 3 pp483-515, 2004).
The study revealed that there was a high incidence of heritable anomalies in the high background region (HBRR). There was a statistically significant increase of Down syndrome, autosomal dominant anomalies and multifactorial diseases and an insignificant increase of autosomal recessive and X-linked recessive anomalies in the HBRR.
The main findings of the study have been summarised as follows:
• The relative risk for chromosomal,
autosomal dominant, and multifactorial anomalies is higher in the HBRR.
• For congenital anomalies (WHO’s
International Classification of Diseases, ICD 740–757), there is no difference
between the areas. Within the study and control areas, ‘nonmigrant’ couples
have 51 percent and 61 percent excess relative risk (ERR), respectively, in
comparison to ‘migrant’ couples. The ERR among the related versus the unrelated
couples is 96 percent in the HBRR and 41 percent in the NRR (normal radiation
region).
• Rates of multifactorial anomalies and
multiple deaths are higher in the HBRR. Again, the related and the nonmigrant
couples have higher risk than the migrants and the unrelated, respectively. The
rates among the migrants in both areas are more or less the same.
• If all untoward outcomes other than Down
syndrome and Mendelian anomalies are grouped together, 6.4 percent of the
unrelated ‘migrants’ in the NRR are affected versus 16.4 percent of the related
couples in the HBRR.
The authors suspect that exposure to radiation was genetically significant. ‘Besides the external radiation from beta particles and gamma rays from the soil, there is the possibility of internal exposure through air, water, and food. Soman (27) estimated the per capita daily uptake of radium-228 by the study population as 4.72 Bq. Based on the average consumption of sardines, Van de Laar (18) estimated the daily intake as less than 0.01 Bq per person. Since the coastal land is less fertile and farming and husbandry are restricted to small pockets, the internal exposure is mainly from poultry products, fish, and accidental ingestion of fine grains of monazite in childhood’.
The authors suspect that exposure to radiation was genetically significant. ‘Besides the external radiation from beta particles and gamma rays from the soil, there is the possibility of internal exposure through air, water, and food. Soman (27) estimated the per capita daily uptake of radium-228 by the study population as 4.72 Bq. Based on the average consumption of sardines, Van de Laar (18) estimated the daily intake as less than 0.01 Bq per person. Since the coastal land is less fertile and farming and husbandry are restricted to small pockets, the internal exposure is mainly from poultry products, fish, and accidental ingestion of fine grains of monazite in childhood’.
They revealed that the mean cumulative
exposure to external radiation during the reproductive life of people living in
the high-background radiation regions is 18 rads for women and 22 rads for men,
six times the exposure in the normal radiation region.
Conclusion
Thorium from Lynas is TENORM and a radioactive waste which has serious health risks.
Thorium from Lynas is TENORM and a radioactive waste which has serious health risks.
We urge the PSC and the Government to
seriously weigh the published and reviewed scientific findings and views of the
international experts quoted above before decisions on Lynas are made.
We strongly urge that Lynas be NOT allowed to
operate in Malaysia.
Letter to the Editor - 11 June 2012
KILANG MEMPROSES `RARE EARTH’ MEMBIMBANGKAN PENDUDUK GEBENG, PAHANG
|
Written by Foon Weng Lian
|
Friday, 08 April 2011 11:14
|
Kerajaan Negeri Pahang telah meluluskan permohonan
syarikat Lynas Corporation Ltd untuk membina sebuah kilang memproses dan
penapisan ‘rare earth’ yang diimport daripada Australia di Gebeng, Pahang.
Tindakan ini telah menimbulkan bantahan daripada penduduk setempat terhadap
projek ini kerana bahan ‘rare earth’ yang bakal diimpot dari Australia itu
dikatakan mengandungi bahan radioaktif. Menurut laporan berita New York
Times, seramai 2,500 orang pekerja terlibat dalam pembinaan kilang tersebut
yang menelan sebanyak AS$230 juta. Dalam masa yang sama proses perundingan
dengan penduduk setempat masih berjalan.
Apakah yang dimaksudkan dengan ‘Rare Earth’?
‘Rare Earth’ ialah satu set bahan galian yang terdiri daripada 17
elemen-elemen ataupun logam yang terletak di dalam jadual berkala kimia.
‘Rare Earth’ ataupun bahan galian yang jarang ditemui, diberi nama ini
disebabkan ia tidak dapat dikesan dan digali dalam jumlah yang banyak. Elemen-elemen
‘Rare Earth’ yang terdapat dalam jadual berkala kimia adalah Scandium,
Yttrium, Lanthanum, Cerium, Praseodymium, Neodymium, Promethium. Samarium,
Europium, Gadolinium, Terbium, Dysposium, Holmium, Erbium, Thulium, Ytterbium
dan Lutetium. ‘Rare Earth’ banyak terdapat di China, Amerika Syarikat dan
Australia. Namun begitu, kerajaan China telah mengeluarkan arahan untuk
menghadkan eksport ‘rare earth’. Langkah ini telah menyebabkan harga bahan
tersebut meningkat hingga memecah rekod tertinggi. Oleh sebab itu,
negara-negara lain sedang cuba sedaya-upaya untuk mencari jalan alternatif
untuk mendapatkan ‘rare earth’ ini. Keadaan ini juga menggesa syarikat
perlombongan Austalia iaitu Lynas untuk menyiapkan kilang tersebut di Gebeng
itu, yang dilaporkan boleh menyumbang kepada hampir satu pertiga daripada
permintaan dunia terhadap bahan ini. Menurut Lynas, kilang tersebut akan
menghasilkan tiga jenis produk mineral sintetik seperti sintetik gypsum,
gypsum yang dikayakan oleh magnesium (tidak mengandungi bahan radioaktif),
logam phosphogypsum yang mengandungi thorium semulajadi (mengandungi bahan
radioaktif yang rendah). Lynas akan menukarkan bahan-bahan yang telah
diproses ini menjadi bahan yang selamat dan boleh digunakan sebagai bahan
untuk penyelidikan dan pembangunan.
Bagi pengurusan sisa-sisa buangan daripada kilang
tersebut, Lynas akan memberikan dana yang mencukupi kepada kerajaan untuk
memastikan pengurusan yang lengkap dan selamat. Bahan galian `Rare Earth’
merupakan komponen yang paling penting dalam produk teknologi bersih dan
hijau seperti panel tenaga suria, bateri dan juga turbin angin yang digunakan
untuk menjana tenaga elektrik. Hampir 300kg neodymium diperlukan menghasilkan
turbin angin yang berskala besar. Selain itu, hampir semua peralatan elektrik
yang digunakan dalam kehidupan harian juga mengandungi ‘rare earth’ seperti:
• iPods - Dysprosium, neodymium, praseodymium,
samarium, terbium
• Gentian optik (Fibre optics) - Erbium,
europium, terbium, yttrium
• Turbin angin - Dysprosium, neodymium,
praseodymium, terbium
• Mentol Lampu yang cekap tenaga - Europium,
terbium, yttrium
• Kenderaan ’hybrid’ - Dysprosium, lanthanum,
neodymium, praseodymium
• Televisyen - Europium, terbium, yttrium
Aktiviti melombong dan memproses bahan ‘rare
earth’ boleh mendatangkan banyak impak negatif kepada alam sekitar. Di
peringkat pemprosesan, `air toxic’ diperlukan untuk tujuan tersebut. Pada
tahun 1985, kilang Asian Rare Earth telah dibina oleh Mitsubishi Chemical di Bukit
Merah, Perak. Akibat daripada risiko yang dikenal pasti kesan daripada
pendedahan bahan radioaktif dan pencemaran kepada alam sekitar dan penduduk
setempat, maka kilang tersebut telah dihentikan operasinya pada tahun 1992
apabila bantahan yang berterusan oleh penduduk setempat.
Namun, kesan yang ditinggalkan oleh kilang
tersebut adalah teruk dan sukar dilupakan. Untuk tujuan pembersihan kilang
dan bahan kimia yang digunakan dalam kilang itu, Mitsubishi Chemical telah
membelanjakan hampir AS$100 juta dan kerja pembersihan masih berjalan
sehingga kini. Selain itu, dalam masa lima tahun selepas kilang tersebut
menghentikan operasinya , seramai lapan orang telah dijangkiti penyakit
leukimia dan tujuh orang daripadanya telah meninggal. Kes kecacatan semasa
kelahiran juga berlaku dalam kalangan penduduk di kawasan tersebut.
Pada tahun 1990-an, tapak perlombongan dan pemprosesan di Mountain Pass, Amerika Syarikat menghasilkan beratus-ratus liter air buangan yang mengandungi elemen-elemen radioaktif daripada thorium dan uranium yang terdapat secara semula jadi dalam ‘rare earth’ dan mencemari kawasan sekitarnya.
Kini, dengan pembelian semula tapak perlombongan
itu oleh Molycorp, syarikat tersebut akan melaburkan sebanyak AS$500 juta
untuk membersihkan dan menaik taraf tapak tersebut. Selain itu, Molycorp juga
akan membina satu stesen janakuasa yang menggunakan gas asli untuk kegunaan
tapak itu. Air buangan yang dihasilkan juga akan dikitar semula untuk
menghasilkan asid hidroklorik dan natrium hidroksida yang diperlukan untuk
mengasingkan ‘rare earth’ semasa pemprosesan. Keperluan air untuk tapak itu
juga hanyalah 10% daripada kadar penggunaan dulu.
Persoalan yang timbul daripada projek Lynas
ialah:
1. Kenapakah
kerja-kerja pembinaan kilang tersebut dilakukan semasa sesi perundingan masih
dijalankan dengan penduduk setempat?
2. Adakah
kajian impak alam sekitar (Environment Impact Assessment, EIA) telah
dijalankan untuk projek ini?
3. Menurut
akhbar The Star, Lynas akan menyediakan dana untuk pengurusan sisa-sisa
buangan daripada kilang itu kepada kerajaan. Berapakah jumlah dana tersebut?
4. Laporan
Jabatan Alam Sekitar, Lembaga Perlesenan Tenaga Atom (AELB) dan Agensi
Nuklear Malaysia perlu diumumkan kepada rakyat, terutamanya penduduk setempat
dan bukannya antara agensi-agensi kerajaan dan Lynas sahaja.
Foon Weng Lian
Persatuan Pengguna Tenaga dan Air Malaysia
(WECAM)
|
Teks
Ucapan Perbahasan Peringkat Jawatankuasa Kementerian Sumber Asli dan Alam
Sekitar 18 November 2008
Dato Pengerusi,Saya turut serta di dalam perbahasan diperingkat jawatankuasa bagi KEMENTERIAN SUMBER ASLI DAN ALAM SEKITAR.
Butiran 060200 adalah dirujuk
Komitmen dari pihak Kementerian
untuk memastikan alam sekitar sentiasa bersih, selamat, sihat, produktif dan
tidak dicemari, amat-amat dihargai kerana alam ini merupakan anugerah kita terhadap
anak cucu kita dan generasi akan datang. Keprihatinan pihak Kementerian
berkenaan Pembangunan Lestari, mesti diterjemahkan dalam bentuk
keputusan-keputusan yang tegas dan komited. Saya ingin menarik perhatian pihak
Kementerian berkenaan tindakan Jabatan Alam Sekitar Pahang yang telah
meluluskan lesen kepada Lynas Corporation Malaysia Sdn Bhd untuk membina satu
Advanced Material Plant di Pusat Industri Gebeng Kuantan pada awal tahun ini.
Dato Pengerusi,
Lynas Corp Ltd merupakan syarikat
asing yang melaburkan RM1 billion bagi membina prasarana serta kemudahan untuk
memproses lathanides (nama
saintifik bagi rare earth) di 72, Jalan Gebeng 1/24, Bandar Industri Gebeng
Jaya, Kuantan 26080 Pahang. Kawasan seluas 101.25 hektar di Kawasan
Perindustrian Gebeng di peringkat permulaan, di mana operasinya dijangka
bermula September 2009. Lathanides
digunakan sebagai pemangkin untuk pembuatan mentol lampu jimat
tenaga serta bateri kering. Ianya juga digunakan dalam pemprosesan banyak lagi
produk teknologi moden. Bahan mentah pula akan dibawa masuk dari kuari milik
Lynas di Pergunungan Weld, (Mt Weld), New South Wales sebelum diproses di
Gebeng. Manakala keuntungan bagi negeri dan negara dijangka mencecah sehingga
RM4.7 billion daripada pelaburan bertempoh 15 tahun yang pertama.
Saya ingin membawa kepada perhatian
dewan yang mulia ini bahawa elemen-elemen rare earth ini, sebenarnya berpotensi menghasilkan kadar
radiasi peringkat rendah mahupun sederhana. Sebab itulah pihak
pemaju industri ini memerlukan lesen khas dari Lembaga Perlesenan Tenaga Atom
(AELB) sebelum memulakan operasinya. Ini secara jelas menunjukkan bahawa,
operasi pemprosesan rare earth ini melibatkan penggunaan serta penghasilan sisa
radioaktif.
Di negara China dan India, proses seperti ini
begitu terkawal aktivitinya. Walaubagaimanapun, China sendiri sudah mula memberhentikan
industri-industri merbahaya seperti ini dengan cara memperketatkan peraturan,
yang secara tidak langsung memaksa keluar industri ini dari negara mereka. Tujuannya bagi
menjamin alam sekitar yang sihat kepada penduduknya. Proses seperti
itu memerlukan satu sistem pengurusan yang rapi khususnya pengurusan sisa
radioaktif termasuk urusan penyimpanan sisa buangan serta pengangkutannya. Malah
lampu kalimantang yang sudah tidak digunakan lagi pun, termasuk di dalam
kategori sisa buangan terjadual di bawah Peraturan Kualiti Alam Sekitar (Sisa
Buangan Terjadual) 1989 dan perlu dilupuskan mengikut prosedur bagi menjamin
keselamatan dan kesihatan masyarakat dan alam sekitar.
Persoalannya ialah mengapa Lynas
sendiri yang sebelum ini beroperasi di negeri China telah pun terpaksa beralih
tempat untuk memproses rare earth ini, kenapa mereka terpaksa mencari lokasi
baru, keluar dari negeri China? Lynas juga enggan membuat pemprosesan bahan ini
di negara mereka sendiri, Australia. Kenapa? Kita kena tanya hal ini. Kenapa
mereka sanggup membawa bahan tersebut ke Malaysia? Kenapa Malaysia pula menjadi
negara yang mahu menerima projek berbentuk begini di negara kita. Kerajaan
Negeri Terengganu telah menolak untuk diadakan projek ini di Telok Kalong
Kemaman, Terengganu pada bulan Julai 2007, iaitu selepas mengkaji isu-isu
keselamatn yang membabitkan nyawa manusia serta juga selepas mendapat
maklumbalas dari NGO-NGO. Akan tetapi pada 24 Ogos 2007, MIDA pula
mengenalpasti lokasi baru di Gebeng, Kuantan. Kerajaan Pahang pula menjadi pak
sanggup menerima projek ini.
Walaupun pihak berkuasa sentiasa
mendakwa bahawa mereka sentiasa mengawasi dan memantau operasi industri seperti
itu. Akan tetapi,sejarah hitam industri pemerosesan rare earth di Malaysia
telah pun berlaku sekitar awal 1990an di Bukit Merah, Perak. Starikat usahasama
dari Jepun yang mendakwa menggunakan teknologi pemerosesan rare earth mesra
alam telah gagal mengurus sisa buangan industri mereka dan mengakibatkan
pencemaran alam sekitar. Lebih buruk lagi, di dalam kes Bukit Merah sisa
buangan yang bersifat radioaktif itu telah dihebahkan kepada penduduk untuk
diambil sebagai baja sebagai langkah ‘pelupusan’ mudah. Akhirnya akibat radiasi
sisa buangan radioaktif tersebut, kadar kejadian kanser, kelahiran bayi
pramatang dan cacat malah keguguran bayi meningkat secara mendadak melebihi
kadar purata yang direkodkan di peringkat kebangsaan. Penduduk setempat telah
menjadi mangsa serta hidup merana. Setelah puas menentang, akhirnya mahkamah
membatalkan lesen syarikat terbabit setelah dengan ‘harga’ yang cukup
mahal;nyawa dan kesihatan.
Menjadi lumrah syarikat-syarikat
seperti itu menjanjikan bahawa keselamatan masyarakat dan kebersihan alam
sekitar menjadi keutamaan mereka. Apa yang sering terjadi ialah, setelah
sedikit lama beroperasi, kemungkinan kejadian-kejadian seperti pelupusan sisa
secara haram dilakukan. Malah, kemudahan penyimpanan sisa buangan sementara
seperti yang dituntut peraturan juga, mungkin tidak lagi menjadi keutamaan.
Sisa-sisa mungkin akan dibiarkan secara terbuka dan mendedahkan bahaya kepada
masyarakat dan alam sekitar.
Kita sudah ada precedence timbulnya
masalah sebelum ini di Bukit Merah, Perak di dalam industri yang sama. Tambahan
pula di negara kita ini kita punyai masalah dengan penguatkuasaan. Masalah
pembuangan sampah merata-rata pun kita susah nak buat penguatkuasaan, saya
khuatir, bagaimanakah kita mampu melaksanakan penguatkuasaan dalam kes ini yang
melibatkan sisa radioaktif merbahaya.
Bagaimana pula sekiranya ada leakage kebocoran di
tempat penyimpanan sisa buangan. Bukankah ianya akan mencemarkan Sungai Balok
yang kemudiannya akan mencemarkan ikan-ikan di Laut China Selatan. Kuantan
merupakan pangkalan penangkapan ikan yang terbesar di dalam negara. Ikan-ikan
dari Kuantan dihantar ke Pasar Borong di Selayang yang kemudiannya di hantar
keseluruh pasar-pasar dan ke restoran-restoran negara untuk dijadikan hidangan
rakyat Malaysia. Insiden-insiden kes rasuah yang tinggi juga merupakan masalah
yang kita hadapi di mana ianya menambah kekhuatiran rakyat berkenaan
penguatkuasaan berkesan.
Memandangkan projek ini yang begitu
sensitif terhadap keselamatan orang awam dan berisiko tinggi, saya menggesa
kepada pihak Kementerian khususnya Ketua Pengarah Pihak Kementerian Sumber Asli
dan Alam Sekitar, supaya mengarahkan supaya diadakan satu kajian DEIA(Detailed Environmental Impact Analysis)
yang kemudiannya perlu pula dipamerkan kepada orang awam selama 40 hari untuk
maklumbalas. Walaupun projek ini mungkin tidak memerlukan DEIA dilakukan tetapi
demi memastikan keselamatan awam, ‘to
be double sure’ , tidak rugi sekiranya pihak Kementerian membuat
kajian yang lebih teliti sebelum projek ini dimulakan. Keselamatan orang awam,
bayi-bayi di dalam kandungan dan anak-anak kita yang terancam tidak boleh
dipergadaikan. Terima kasih, Dato Pengerusi. Fuziah Salleh Ahli Parlimen
Kuantan
p/sst : Habis kalau sungguh sangat Y.B.
Menteri Kesihatan yg amat amat prihatin tentang kematian ibu mengandung serta
sangat ambil berat tentang banyak kanak-kanak dilahirkan mati akibat kecacatan
congenital anomalies, kenapa Y.B. tidak lantang bersuara untuk mengharamkan
penubuhan lynas dari bumi Malaysia ???
Tiada ulasan:
Catat Ulasan
Nota: Hanya ahli blog ini sahaja yang boleh mencatat ulasan.